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Abstract

A major study on sampling errors of variance components was conducted within the

framework of generalizability theory by Smith (1978), The study employed an intuitive
approach for solving the problem of how to allocate the number of conditions to different
facets in order to produce the most stable estimate of the universe score variance. in this
study, optimization techniques are proposed as a promising approach for solving allocation

problems in generalizability studies.

Key words: generalizability theory, variance components, mathematical programming,
sampling errors.
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Introduction

Generalizability theory (Cronbach, Gleser, Nanda, & Rajaratnam, 1972) makes a

distinction between a generalizability study and a decision study. A generalizability study is

conducted to obtain estimates of variance components associated with the universe of
admissible observations. In a decision study these estimates are used to make decisions on

the actual composition of a measurement instrument. Owing to limited resources, however,

generalizability studies are often carried out with relatively small samples and relatively few

conditions of each facet. Cronbach et al. (1972) have pointed out the danger of employing

estimates of variance components and coefficients of generalizability studies based on small

samples. The estimates of the variance components in these studies frequently entail sampling

errors too large to be useful for a decision study.

A major study on sampling errors of variance components was conducted within the

framework of generalizability theory by Smith (1978). The study employed an intuitive

approach for solving the problem of how to allocate the number of conditions to different

facets in order to produce the most stable estimate of the universe score variance. In recent

studies, the versatility of optimization techniques for solving allocation problems in decision

studies was amply demonstrated. In this paper, optimization techniques are proposed as a
promising approach for solving allocation problems in generalizability studies.

Sampling errors of estimates of variance components are derived first. The

minimization of sampling errors of variance components under constraints is discussed next.

The balanced two-facet random-model crossed design will be used for illustration.

Sampling Errors of Estimates of Variance Components

In generalizability theory, the analysis of variance method (e.g., Searle, 1971, p. 384)
is used for the estimation of variance components from balanced data. This method starts

with calculating the mean squares of the analysis of variance, whereafter the expected values

of the mean squares are derived under the random or mixed model. Table 1 contains the
expected mean squares for the two-facet random-model crossed design.
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TABLE 1.

Expected Mean Squares for p x i x j Random-Model Crossed Design

Source of Variance Expected Mean Squares

Persons (p)

Items (i)

Raters ( )

Persons x items (pi)

Persons x raters (pj)

Items x raters (ii)

Residual (pij,e)

EMS = 02 + ma2. + n.a2.
+ nn.a 2

-14e i PJ j P1 j p
EMSi = 02 + n a 2.

+ n.a2
+ n n.a 2

PiAe P 1.1 I Pi P I i

EMS = 02pij,e + n a.. + n.a2.
+ n no.2 2

P II 8 PJ p i I
EMSpj = api.he r Pi

2 02

2 2EMSpi + niaPi
2 2EMSii = Croix + npay

EMSres = 2

CIP(he

Equating the expected values to the calculated values leads to linear equations in the variance

components, the solutions to which are the estimators of the variance components. The
variance components for the two-facet random-model crossed design can be obtained witli the
following equations:

2 = MS
Pihe 14e

A

= (MSu MSpii,e)//ipif
2

Opi = (MSpi MSpii,e)ini
2

iG
P

. = (MSpi MSpii,e"
42. = (MS/ AlSii MSpi + MS pii,eyKr li)I
A 2
a, = (MS, AlSy MSpi + MSpy,,,)

/ (riptti)
2

P
0 = (MSp MSpi MSpi + AiSpii,e)1(flirli)

In the statistical literature (e.g., Searle, 1971, pp. 415-417), the theoretical sampling
variance of estimates of variance components is expressed in terms of the expected mean
squares. As was shown in Table 1, the expected mean squares are firgar combinations of the
population values of the variance components, and therefore the expected sampling variance

of the variance components of the two-facet random-model crossed design can be expressed
as:
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The three factors affecting the magnitude of the sampling errors of the variance
components can be inferred from equations (1a-lg).

The first factor concerns the relative magnitudes of the population values of variance
components. While the population values of the variance components are not known,
equations (1a-lg) can be very useful for a researcher planning a generalizability study if prior

information on the relative magnitude of the population values of variance components is

available from comparable studies. In Table 2, for example, total variance is proportioned
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in a way that resembles estimates commonly observed in applications of the two- 'facet design

with respect to judgmental data such as observations or ratings (Smith, 1976, p. 90). The
residual component is represented by a small (02,es = 20) and a large (a2, = 76) error
component.

TABLE 2

Variance Components of a Two-Facet Random-Model Crossed Design

Source of Variance Variance Components Proportion of total variance
small error large error

Persons (p)

Items (i)

Raters (i)

Persons x items (pi)

Persons x raters (pj)

Items x (#)

Residual (pij,e)

2
op

2
Oi

2

of
2

api
2

°P/
2

U ti

2
ores

= 20

=. 47

= 12
64

= 35

= 23

= 20,76

.09

.21

.05

.29

.16

.10

.09

.07

.17

.04

.23

.13

.08

.27

The effect of the second factor, design configuration, on the magnitude of the sampling error

of the universe score variance can be seen by comparing equation (1a) to equation (2) for a
design which has facet J nested within facet I:

2 2 2 2

var = +
2 2 2 pi ores 1 (op' arts

(np-1) P ni n
J
n. (ni-1) ni n.n

J

(2)

The comparison of the two equations indicates that the sampling error of the estimate of the
universe score variance can be decreased by employing a nested instead of a crossed design.

The third factor concerns the number of measurement objects and the number of conditions
of each facet. It is obvious that a researcher can avoid large sampling errors by employing

large samples and large numbers of observations in a generalizability study. According to
Smith (1978, p. 322), however, many studies use rather small sample sizes. In the designs
examined in his study, the number of subjects (n p) were represented at three magnitudes: low (np
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= 25), medium (np = 50), and high (np = 100). The number of conditions of each of the
two facets (ni and nj) were represented at two, four, and eight conditions.

Minimizing Sampling Errors of Estimates of Variance Components
Three factors affecting the sampling errors of variance components were identified

above. However, a researcher cannot influence the first factor, and the second factor implies
changing the design of th generalizability study. Therefore, given a certain design choice,
a researcher can only manipulate the third factor. In the following, two approaches for
controlling these sampling errors are presented. The results of the approach followed by
Smith (1976, 1978) will be examined first. An approach for solving allocation problems
based on mathematical programming is presented next.

Intuitive Approach
Under the constraints of a fixed number of np subjects, and a fixed number of

L = ninf. observations, Smith (1978) sought the solution for the problem of how to allocate
the observations in order to minimize the sampling variance of the universe score variance.
Since, according to Smith (1978, p.328), simple solutions for this minimization problem
could not be derived analytically, a more intuitive approach was chosen. From the
examination of equation (la) he concluded that as the residual component increases, equal
allocation will maximize the divisor of the residual component and the optimal solution tends
toward ni = nj . From a study by Woodward and Joe (1973) he borrowed the conclusion that

as the residual component decreases, the allocation to ni and nj is determined by the ratio
of 01,2; and opt . In order to evaluate these two conclusions, the minimization problem is
stated in terms of mathematical programming as

minimize var ara

subject to L = nin and

n = constant.

objective-function

equality constraints

Objective-function (3) can be composed of four parts:

6
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From equations (3a 3d) it can be inferred that (3a), the 'persons' part, determines the value

of the objective-function almost completely. With the appropriate variance components from
Table 2 with a small error component and ni = 8 and nj = 4, the contribution of (3a) to the

value of the objective-function is 97%. With a large error component, this contribution is

96%. For both error components, the contribution of (3d), the 'residual' part, is negligible.

The optimal continuous solutions for the variance components from Table 2 with L = 32 and cir2

equal to 20 or 76, are computed as ni = 7.4 and nj = 4.3. The same solutions are obtained

with G2r equal to zero. With an improbable residual component equal to 200, however, the

optimal continuous solutions are only slightly different, ni = 7.3 and n = 4.4. Only an
infinitely large residual component would affect the value of the objective-function and result
in a solution tending toward ni = n1. The same optimal integer solutions, ni = 8 and nj =

4, are obtained with different residual components. The conclusion therefore is that the
optimal number of conditions for the two facets does not depend on the magnitude of the
residual component. To a lesser degree the same conclusion applies to parts (3b) and (3c),

the 'interaction' components, of equation (la).

Woodward and Joe (1973) showed that for the problem of maximizing the generalizability

coefficient subject to the constraint that the total number of observations is fixed, the optimal

allocation of conditions should be made directly proportional to op2i /cfp2i . In Sanders,
Theunissen, and Baas (1991), their problem was stated in terms of mathematical
programming as
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minimize
2

2api apJ

ni n ninj

subject to L = nini.

objective-function (5)

equality constraint (6)

Because of equality constraint (6), the residual component does not play a role in determining

the optimal number of conditions. The optimal continuous solutions can be shown to be

2 2

n = L-12. , and n = L ..

a a
P.1 Pi

Smith (1978, p. 329) fails to explain why the results obtained for the optimization problem

defined by (5) and (6) also apply to a seemingly quite different optimization problem as
defined by (3) and (4). The reason is that the dominant role of part (3a) in objective-function

(3) makes the problem of minimizing objective-function (3) almost identical to the problem

of minimizing objective-function (5). Note that by taking the square root of (3a) and leaving

out the constant .2p, equation (5) is obtained. The continuous solutions for the minimization
problem defined by (3) and (4) will therefore hardly differ from those for the minimization

problem defined by (5) and (6). The optimal continuous solutions for the optimization
problem defined by (5) and (6) for the variance components from Table 2 are ni = 7.6 and
nj = 4.2.

Mathematical Programming Approach

Mathematical programming can be used to solve the problem of controlling the
sampling errors of variance components. The allocation problem is viewed as the

minimization of sampling errors under constraints regarding observations and as the
minimization of observations under constraints regarding sampling errors.

From the foregoing discussion the conclusion can be drawn that for most
generalizability studies the continuous solutions of optimization problems defined by (3) and
(4) will not be much different from the continuous solutions of optimization problems defined
by (5) and (6). A procedure for solving the optimization problem defined by (5) and (6) was
presented in Sanders, Theunissen, and Baas (1991). This procedure, which also allows for
less restrictive and more realistic constraints than (6), can be applied to the optimization
problem under consideration.
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Smith (1978, p. 327) only discusses the problem of minimizing the sampling error of
the univ.ase score variance. Mathematical programming, however, offers the possibility to
solve optimization problems with multiple objective-functions. Williams (1985, pp. 24-26)
describes three ways of dealing with multiple objective-functions. First, the optimization
problem can be solved with each objective-function in turn. A satisfactory solution for the

optimization problem can be selected from the solutions resulting from these different

objective-functions. Second, objectives and constraints can be interchanged, that is, treating

all but one objective-function as a constraint. Third, a linear combination of all the objective-

functions and optimize the multiple objective-function can be taken. The optimization problem

2minimize w var a 2 + w.var a. + wvar a.2

subject to L = ninj, and

n = constant,

objective-function

equality constraints

is a version of the optimization problem defined by (3) and (4) with (3) now being a linear
combination of three ( bjcctive-functions. This solution to the optimization problem requires
giving relative weights, wp , w1 , and 14)1, to the three objective-functions. A less restrictive

formulation of this multi-objective optimization problem is obtained by introducing an
inequality constraint for the sample size, np s 100. It can be shown that inequality
constraints have many advantages over equality constraints. According to Williams (1985,

p. 26), there is no one obvious way of dealing with multiple objectives. Some or all of the
three methods should be used for certain optimization problems.

The other approach for controlling sampling errors of variance components consists of

minimizing the number of observations and/or the number of measurement objects under
constraints of specific sampling errors. A general formulation of this optimization problem
with one objective-function is

minimize n
P

n n.

subject to var s eP p

9
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where e stands for the value of the sampling error of the universe st ore variance considered

to be acceptable. In order to gain an idea of the magnitudes of the sampling errors of
variance components, Smith (1978, p. 335) suggested comparing the sampling errors obtained

by equation (la) with those that would be expected for variance estimates obtained by

drawing repeated samples from a single normal distribution. Assuming a fixed number of
subjects, a restricted version of the foregoing optimization problem is

minimize nini objective-function

subject to var op eP p' threshold constraint

Assuming that the sampling error of the universe score variance is defined by equation (5),

solutions for this optimization problem can be obtained by uie optimization procedure

presented in Sanders, Theunissen, and Baas (1989). That procedure could also be used to
obtain starting solutions for optimization problems with more complex objective-functions

and/or constraints.

An example of an optimization problem with multiple constraints is

minimize n n.n.
P I 1

2subject to var -
P s ep and

var ai2 s ei, and
2var s e.

objective-function

threshold constraints

where ep , ei, and wi , stand for the values of three sampling errors of variance components.

In general, the value for ep will be smaller than the value for ei or ej. Because the size of
the sample is often the factor responsible for the major part of the costs of a generalizability

study, the optimization problem could be formulated as
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minimize n tni

subject to np s L
A 2var a s e

P
and

A 2var ai s ei, and
A2var of set,

where L is the maximum sample size that the researcher can afford.

objective-function

threshold constraints

Conclusions and Discussion

In the study presented in this paper it was shown how our understanding of factors
determining the sampling errors of variance components can be improved by viewing the

problem of the optimal allocation of observations as an optimization problem. This approach

leads to the important conclusion that allocation problems in generalizability studies have

much in common with allocation problems in decision studies. An important practical

consequence of this conclusion could be a considerable reduction of the effort required to

develop optimization procedures and computer programs.

Apart from the three factors discussed before, another factor affecting the magnitude

of the sampling errors of variance components is the complexity of the design (Smith, 1981).
The effect of this factor on the stability of the estimates can be shown by comparing equation

(la) tc, the equation for a one-facet random-model crossed (p x i) design:

2 2

var a2
+

2 2 fires 1 are:
p (n -1){[ P n. (ni -1) ni

From the comparison it is clear that the sampling error of the universe score variance
component of the one-facet random-model will be smaller than the sampling error of the
universe score variance of the two-facet random-model. However, there is an essential
difference between the impact of this factor and the other three factors. Design complexity

implies generalizations to different universes which means that the variance component
estimates have different interpretations.

The results of Smith's study (1978, p. 336) show that the sampling errors for the
universe score variance are intolerably large for practical purposes unless npninj is 800 or
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larger. Bell (1986) found the same results in a study on simultmeous confidence intervals of

variance components. It should be clear to the researcher planning a generalizability study

that the problem of sampling errors may make the results of the study unusable. Another
problem is that of limited resources (time, money, etc.) which may render the study
infeasible. What is needed therefore is a procedure which enables the researcher to design

a generalizability study in line with stated limits on sampling errors as well as resources. The

start of such a procedure was presented in this paper.
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